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Abstract

Exact solutions are found to the equations of a standard nuclear quark model
exemplified by the Bonn model which is defined in terms of an effective
pairing force. We show, by symmetry arguments, that, in general, the ground
state of this model is not color neutral. In particular, color-neutral states
have, in general, higher energy than the ground state. A novel BCS-type
formalism, which is able to describe exactly color symmetrical BCS states,
is used to show that the model admits, but only as excited states, color-
neutral superconductivity. Therefore, such a model, with just a pairing force,
is unrealistic as a model for the color-neutral confined phase which prevails
at normal nuclear densities. Finally, the paper shows that there exists a color-
neutral superconducting phase independently of whether the model is based on
the pairing force or a more realistic three-body string force.

PACS numbers: 21.65.Qr, 21.60.Fw

1. Introduction

It has been more or less clear [1], since the creation of QCD as a rigorous theory of strong
interaction, that a nuclear structure is based on the more fundamental entities of quark and
gluon fields in the framework of QCD field theory. An interesting model (in spite of well-
known drawbacks) concerning this viewpoint is the Bonn model [2] that quite successfully
describes the nucleus as an MIT bag originally meant for nucleons with a bag pressure ensuring
that no free (colored) quarks escape. By introducing a decisive pairing force that suppresses
unphysical degeneracies of the quark system, many features of nuclear physics are reasonably
well accounted for by this model. Although the model lacks quark confinement, it helps
in understanding some symmetry aspects of hadron physics: finite nuclei, nuclear matter or
even high-density quark matter. It should be remarked that in 1978 a nuclear physics model
which is similar in spirit to the Bonn model was proposed and discussed on the basis of
a path integral approach [3]. Even though there are no colored states in QCD, the model
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contains a colored sector to which the ground state belongs. The existence of a sector which
is not color neutral is, of course, an artifact of the theory even with an overall bag pressure.
However, the model is interesting because it brings color-neutral states rather close to the
ground state. This is quite remarkable since the involved interaction is a two-body force,
which is naturally associated with two-body correlations, but not with three-body correlations.
On the other hand, it seems reasonable to assume that quarks enter in color-neutral states in
the form of color-neutral triplets. For this reason, the model is usually regarded as a model
for the formation of color-neutral triplets. Thus, an important ingredient in the Bonn model
of Petry et al is the referred pairing interaction, inspired by the famous seniority model of
nuclear physics [4] that describes superconducting features of a nuclear structure, namely, a
characteristic gap in some spectra associated with a pairing force.

This model was originally devised as a model for the formation of triplets (clustering of
quarks into nucleons). This being our starting point, we shall derive a series of mathematical
results concerning the symmetries of the model and of the states involved. Moreover, we
shall arrive at expressions for the ground-state and excited-state energies, and thus for the gap
energy. Basically, the conclusion of our study amounts to showing the incompatibility of the
model with the assumption of a color-neutral ground state, composed of color-neutral triplets.
We find that the model shows a stronger tendency for the formation of Cooper pairs than for
the formation of colorless triplets. Moreover, we find that colored BCS states are energetically
favored compared with color neutral BCS states, which only exist as excited states. This is
in consonance with the existence of a color-superconducting phase in quark matter, recently
advocated by many authors [5]. For a recent review, see [6]. A boson condensation mechanism
allows for the important color-neutral sector of the model to coexist with the tendency for the
formation of Cooper pairs belonging to the 3̄ representation.

The model is obviously too schematic to be realistic. However, due to the simplicity of
the interaction, exact solutions may easily be obtained, so that the model is useful for testing
approximation methods which are applied in more realistic models. We find that the BCS
wavefunction well describes not only states with color but also those belonging to the color
neutral sector. A version of the BCS theory appropriate for describing color neutral states has
been presented.

2. The schematic nuclear quark model of Bonn

The Bonn quark model proposed by Petry et al [2] contains a schematic interaction of the
following form:

Hint = G

3∑
i=1

A∗
i Ai, (1)

where

A∗
1 =

∑
m

c∗
2mc∗

3m̃, A∗
2 =

∑
m

c∗
3mc∗

1m̃, A∗
3 =

∑
m

c∗
1mc∗

2m̃, ˜̃m = m (2)

and G < 0 is the coupling constant. In the following, we shall not treat the full model, but only
the interaction part, which amounts to discussing the model in the strong coupling limit. Here,
c∗
im are quark creation operators and the indices i and m denote, respectively, the color and

the remaining single-particle quantum numbers. By m̃, we mean the state obtained from m by
time reversal. More specifically, if m stands for the magnetic quantum number, then m̃ = −m.
Flavor and other quantum numbers may also be included; m then stands for a set of quantum
numbers. If m corresponds to momentum p and flavor f , then m̃ corresponds to momentum
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−p and flavor f . In the two-flavor case, m = (jm, τ ), where jm = −j,−j + 1, . . . , j is the
magnetic quantum number and τ = − 1

2 , 1
2 is the isotopic spin, then being m̃ = (−m,−τ),

which is a possible choice. This model which is here investigated anew has been further
developed by Pittel and others [7], who proposed a mapping of quark degrees of freedom onto
collective triplets of constituent quarks. The Hamiltonian consists mainly of a pairing force of
the type familiar with BCS models and mimics the ’t Hooft potential energy that was developed
from a condensate, in the context of non-Abelian gauge theories, like QCD [8]. Clearly, the
operators A∗

i , Ai generate a specific algebra. We denote by 2� the level degeneracy for a fixed
color, that is, the totality of eigenvalues for all quantum numbers beyond color, such as jz and
isospin. In an extended system, and in the spirit of BCS theory, 2� stands for the number
of states, per color, within the shell on both sides of the Fermi surface where the attractive
interaction, responsible for superconductivity, is assumed to act. Then, we find

J11 := [A∗
1, A1] = −2� +

∑
m

(c∗
2mc2m + c∗

3mc3m),

J12 := [A∗
2, A1] = −

∑
m

c∗
1mc2m, . . . ,

[J12, J21] =
∑
m

(c∗
1mc1m − c∗

2mc2m) = J22 − J11, . . . , (3)

[J12, J23] =
∑
m

c∗
1mc3m = −J13, [J12, J32] = 0, . . . ,

[A∗
1, J12] = −

∑
m

c∗
3mc∗

1m̃ = −A∗
2, . . . .

In general

[A∗
i , Aj ] = Jij , [Jij , Jkl] = Jkj δil − Jilδkj ,

[A∗
i , Jkl] = −A∗

l δik, k �= l, [A∗
i , Jkk] = −A∗

i (δik + 1), (4)

Jij = −
∑
m

c∗
imcjm + δij

(
−2� +

3∑
k=1

∑
m

c∗
kmckm

)
i, j, k, l = 1, 2, 3.

From the number of generators and the commutation relations it is clear that the relevant algebra
is su(4). It is natural to define J4i := A∗

i , Ji4 := Ai, i = 1, 2, 3. For 1 � i, j � 4, Jij are the
generators of su(4). For 1 � i, j � 3, Jij are the generators of an su(3) sub-algebra which
commute with the Hamiltonian H. There are nine generators but only eight are independent,
since

∑
i Jii commutes with all of them. Moreover, for i �= j, Jij have the effect of replacing

the color j by the color i. If, for i �= j , we have Jij |�〉 = 0, then |�〉 is color neutral. It should
be stressed that, for the same reason, the Hamiltonian H has su(3) symmetry. For curiosity,
we may observe that J12, J21, J11, J34, J43, J33 generate a su(2) × su(2) sub-algebra. The
eigenvectors of Hint are easily determined. Let

|�(p1, p2, p3)〉 = A
∗p1
1 A

∗p2
2 A

∗p3
3 |0〉, p1 + p2 + p3 � 2�. (5)

We find

H |�(p1, p2, p3)〉 = G(2� + 1 − (p1 + p2 + p3))(p1 + p2 + p3)|�(p1, p2, p3)〉. (6)

Thus, |�(p1, p2, p3)〉 is an exact eigenvector of H corresponding to the eigenvalue
G(2�+1− (p1 +p2 +p3))(p1 +p2 +p3). The integers p1, p2, p3 are related to the numbers of
quarks in |�(p1, p2, p3)〉. Hence, p2 +p3 is the number of quarks of color 1 and 2(p1 +p2 +p3)

is the total quark number. The lowest energy G�(� + 1) occurs for p1 + p2 + p3 = �. We
observe that the state |�(p1, p2, p3)〉 is not color neutral, even if p1 = p2 = p3 �= 0. Indeed,
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from (3), it follows that J12|�(p1, p2, p3)〉 �= 0. Since there are no colored states in QCD, the
existence of a sector which is not color neutral must be regarded as an artifact of the model.

In the following sections, we discuss what kind of pairing force we are analyzing, and
in section 5 we argue that an appropriate mechanism, such as a three-body string force, is
required in order to ensure color neutrality of the ground state. There are two ways of getting
a pairing force: one is from outside where ‘instantons’ or other effects give rise to pairing.
Another way is that the pairing phenomena come about because of a weakened string force
due to asymptotic freedom.

There is also an important issue concerning the various phases. Usually, one considers
the color superconducting phase as being that occurring at low temperature and very high
density. However, we have to make clear what symmetries are broken. Another type of color
superconductivity seems to be occurring in the confined phase of strings at low temperature
and density where the Meissner effect enhances rather than squeezes out the magnetic field.
Also electric–magnetic duality changes roles in the color case compared to the QED case.

3. Non-symmetrical representations

If the number of quarks is larger than 2�, then it is necessary to consider non-symmetrical
representations to reach the ground state. Let

|�(�′)〉 =
(

�′∏
m=1

c∗
1mc∗

1m̃

)
|0〉, (7)

with �′ � �, which means that 2�′ quarks with color 1 are occupying, in pairs, some of the
available single-particle states, but not necessarily all of them. In the product, the notation of
the limits, m = 1 to �′, symbolically means that no two m states are considered such that one
particle is related to the other by the tilde operation. It is clear that

A1|�(�′)〉 = A2|�(�′)〉 = A3|�(�′)〉
= J12|�(�′)〉 = J13|�(�′)〉 = J23|�(�′)〉 = J32|�(�′)〉 = 0.

Therefore, |�(�′)〉 is appropriate to generate an irreducible representation of su(4), by acting
on |�(�′)〉 with A∗

1, A
∗
2, A

∗
3, J21, J31. Let

|�(q,�′)〉 = A
∗q

1 |�(�′)〉. (8)

If we restrict our attention to states in which broken pairs are absent, the important states may
be reduced either to type (5) or to type (8). The presence of broken pairs is associated with an
increase in energy and may be ignored if we wish to focus on the lowest energy states. Then,

H |�(q,�′)〉 = Gq(2� + 1 − q)|�(q,�′)〉
− qA∗

2A
∗(q−1)

1 J21|�(�′)〉 − qA∗
3A

∗(q−1)

1 J31|�(�′)〉.
Since

〈�(q,�′)|A∗
2A2|�(q,�′)〉 = q2〈�(�′)|J12A

(q−1)

1 A
∗(q−1)

1 J21|�(�′)〉
= q2(q − 1)(2� − q + 1)〈�(�′)|J12A

(q−2)

1 A
∗(q−2)

1 J21|�(�′)〉
= q2 (q − 1)!(2� − 1)!

(2� − q)!
〈�(�′)|J12J21|�(�′)〉

= q22�′ (q − 1)!(2� − 1)!

(2� − q)!
,
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with a similar result for 〈�(q,�′)|A∗
3A3|�(q,�′)〉, and furthermore

〈�(�′)|Aq

1A
∗q

1 |�(�′)〉 = q(2� − q + 1)〈�(�′)|A(q−1)

1 A
∗(q−1)

1 |�(�′)〉
= q!(2�)!

(2� − q)!
〈�(�′)|�(�′)〉 = q!(2�)!

(2� − q)!
,

it follows that
〈�(q,�′)|H |�(q,�′)〉
〈�(q,�′)|�(q,�′)〉 = Gq

(
2� + 1 − q + 2

�′

�

)
. (9)

The number of quarks in |�(q,�′)〉 is 2(�′ + q). For �′ = �, then |�(q,�′)〉 is an exact
eigenvector of H. Indeed, we have A∗

2|�(�)〉 = 0, so that

A∗
2A

∗(q−1)

1 J21|�(�)〉 = A
∗(q−1)

1 [A∗
2, J21]|�(�)〉 = A

∗(q−1)

1 A∗
1|�(�)〉 = |�(q,�)〉.

Similarly, A∗
3A

∗(q−1)

1 J21|�(�)〉 = |�(q,�)〉. Thus,

H |�(q,�)〉 = Gq(2� + 3 − q)|�(q,�)〉. (10)

In this case (�′ = �), the lowest energy G�(� + 3) occurs for q = �. Denoting by N the
number of quarks, for N � 2�, the ground-state energy is

E0 = GN(4� + 2 − N)/4, 0 � N � 2�. (11)

As a function of N = 2(�′ +q), for fixed �′, (9) is a parabola. The envelope of these parabolas
is the parabolic arc

E0 = G
(N + � + 2�2)2

4�(2 + �)
, 2� � N � �(5 + 4�)

1 + �
, (12)

which is, for 2� � N � �(5+4�)

1+�
, the approximate ground-state energy, in the sense of the

Born approximation. For �(5+4�)

1+�
� N � 6�, the ground-state energy is

E0 = G(N − 2�)(6� + 6 − N)/4,
�(5 + 4�)

1 + �
� N � 6�. (13)

However, no tendency for the formation of colorless triplets really exists. If such a tendency
had existed, the ground state would have su(3) symmetry, since H has su(3) symmetry, but
this is not the case, except, as we will see, for a narrow interval around N = 3�. The model
lacks an ingredient which automatically pushes colored states to higher energies. The situation
is analogous to ferromagnetism, where the ground state explicitly breaks rotational symmetry.
We will argue, in the following section, that the formation of Cooper pairs leads to the explicit
breakdown of the color symmetry of the model, by most states, including the ground state.

4. Color superconductivity

We propose that this model may be regarded as a model for color superconductivity. We
consider the usual color version of the BCS transformation [5],

c2m = αd2m + βd∗
3m̃, c3m = αd3m − βd∗

2m̃, (14)

where α, β are the real parameters such that α2 + β2 = 1. The corresponding BCS vacuum
|	〉 satisfies

d2m|	〉 = d3m|	〉 = c1m|	〉 = 0, (15)

so that 1 is a spectator color. Obviously, in the above-defined BCS vacuum, the number of
quarks of color 1 is zero. The expectation value of the Hamiltonian and of the number of
quarks read, respectively,

EBCS = 〈	|H |	〉 = G((2�)2α2β2 + 2�β4), N = 〈	|N |	〉 = 4�β2. (16)

5
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In terms of the average number of quarks, N , the average energy reads

EBCS = G

4
N

(
4� − N

(
1 − 1

2�

))
. (17)

Its minimum G�2/(1 − 1/(2�)) occurs for N = 2�/(1 − 1/(2�)). A BCS state containing
a non-vanishing number of quarks of color 1 may also be constructed. Define the operators
d1m by

c1m = α′d1m + β ′d∗
1m̃, α′2 + β ′2 = 1, (18)

and consider a new BCS vacuum satisfying

d1m|	〉 = d2m|	〉 = d3m|	〉 = 0.

Then
EBCS = 〈	|H |	〉 = G((2�)2α2β2 + 2�β4 + 4�β2β ′2),

N = 〈	|N |	〉 = 4�β2 + 2�β ′2 (19)

the number of quarks of color 1 is N ′ = 2�β ′2. The maximum value of N ′ is 2�. For
N ′ = 2�, the average energy reads, in terms of the average number of quarks,

E = G

4

(
6� + 3 − N

(
1 − 1

2�

))
(N − 2�) . (20)

Its minimum G(� + 1)2/(1 − 1/(2�)) occurs for N = (4� + 1)/(1 − 1/(2�)).

We claim that Petry’s model describes satisfactorily, in a schematic way, the
superconducting phase of quark matter [5]. Our argument relies on the comparison of the
results based on the BCS approach with the exact ones. For N � 4�2/(1 + 2�), the BCS
ground-state energy is

E0 = G

4
N

(
4� − N

(
1 − 1

2�

))
, N � 4�2

1 + 2�
. (21)

As a function of N = 4�β2 + 2�β ′2, for fixed β ′, (19) is a parabola. The envelope of this
family of parabolas is the parabolic arc

E0 = G
(N + 2�2)2

2�(3 + 2�)
,

4�2

1 + 2�
� N � 2�(3 + 4�)

1 + 2�
, (22)

which is the BCS ground-state energy for 4�2

1+2�
� N � 2�(3+4�)

1+2�
. For 2�(3+4�)

1+2�
� N � 6�,

the BCS ground-state energy is

E0 = G

4

(
6� + 3 − N

(
1 − 1

2�

))
(N − 2�) ,

2�(3 + 4�)

1 + 2�
� N � 6�. (23)

Comparing (11), (12), (13) with (21), (22), (23), respectively, we see that these results agree
with the exact ones, of the order 1

2�
, which supports our claim. In figure 1, we compare, for

� = 10, the exact ground-state energy versus the fermion number, with the corresponding
BCS estimate. The performance of the BCS approximation is remarkable.

Excited states may also be easily described. The energy gap may be defined as the energy
difference between ground states corresponding to neighboring irreducible representations.
Suppose we replace the vacuum |0〉 by the state c∗

1m′c
∗
2m′c

∗
1m′ |0〉. This state behaves as a

vacuum on which the pairs (m′, m̃′) cannot be produced, so, effectively, the degeneracy
becomes 2 (� − 1). For N = 2�, the ground-state energy associated with the vacuum |0〉
was, approximately, E0 = G

((
� + 1

2

)2
. However, associated with the vacuum c∗

1m′c
∗
2m′c

∗
1m′ |0〉

6
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Figure 1. The (absolute) lowest energy of the Bonn model. A comparison of the exact result (thick
line) with the BCS estimate (thin line), for � = 10. The broken line portion corresponds to a Born
approximation estimate.

it becomes E1 = G
(
� − 1

2

)2
. From

E1 − E0 = G
((

� − 1
2

)2 − (
� + 1

2

)2 )
,

the gap −2G� is obtained.

5. Invariant states under su(3)

A state which is made up of colorless triplets has the same number of quarks 1, 2, 3. Moreover,
it is also invariant under su(3). Let us consider the state

|�W 〉 =
(

�′∏
m=1

3∏
i=1

c∗
imc∗

im̃

)
|0〉, Jij |�W 〉 = 0, i �= j.

This is the simplest possible example of a color-neutral state. Contrary to the ground state of H
for N �= 3�, this state is invariant under su(3). The number of quarks in |�W 〉 is NW = 6�′.
Since 〈�W |H |�W 〉 = 6�′G, its energy is EW = 6�′G = NWG, which, for 2� < NW < 4�

is much higher than the ground-state energy, which is of the order
(
� + 1

2

)2
G and occurs for

a colored state. States made up of triplets have a higher energy (except, as we will see, in
a narrow interval around N = 3�). The 6-quark combination

∏3
i=1 c∗

imc∗
im̃ is not the only

possible one which is color neutral. Other color neutral combinations are possible, such as

3∏
i=1

c∗
i1m

c∗
i1m̃

(
c∗
i2m

c∗
i3m̃

+ c∗
i2m̃

c∗
i3m

)(
c∗
i2m′c

∗
i3m̃′ + c∗

i2m̃′c
∗
i3m′

)
,

where i1, i2, i3, i = 1, 2, 3, denote the cyclic permutations of 1, 2, 3. Thus, it is difficult to
obtain a useful characterization of the color-neutral sector in the Fermion realization of the
su(4) algebra. Nevertheless, a Schwinger-type realization of su(4) in terms of eight bosons
has been developed by Yamamura and collaborators [9] which allows a simple and useful
characterization of the color-neutral sector for specific quark numbers and degeneracy 2�.
The model under investigation was originally devised as a model for the formation of triplets
(clustering of quarks into nucleons). However, the tendency for the formation of Cooper

7
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pairs is much stronger, with BCS states being energetically favored. This tendency may be
counterbalanced by an interaction of the type

Hstr = G′ ∑
p

c∗
1pc∗

2pc∗
3pc3pc2pc1p,

which mimics the three-body string force introduced in [10], where the existence of such a
string force was argued for. We observe that the state |�W 〉, defined above, is an eigenvector
of Hstr. The interaction Hstr may easily be generalized by replacing the operators c∗

im, cim by
new Fermi operators d∗

im, dim through a canonical transformation. This interaction commutes
with the su(3) generators. It is related to the su(3) Casimir operators which do not interfere
with the intrinsic properties of the color-neutral sector but are essential for enhancing its role
with respect to the colored sectors, by pushing it down in energy.

5.1. Color-neutral superconductivity

Standard two-flavor color superconductivity explicitly breaks color invariance, since pairing is
allowed only between quarks with two specific colors and quarks with the third color remaining
spectators in the process. The formidable issue of projecting out color-neutral states of the
corresponding BCS states is addressed in [11]. As an alternative to the rather involved
projection techniques which this approach requires in this subsection, we show that the model
also admits color-neutral BCS states, as excited states. The most general color-neutral BCS
state reads

|�cl〉 = exp

⎛
⎝κ

�∑
m=�̃

(c∗
1mc∗

2m̃ + c∗
2mc∗

3m̃ + c∗
3mc∗

1m̃) + υ

�∑
m>0

(c∗
1mc∗

1m̃ + c∗
2mc∗

2m̃ + c∗
3mc∗

3m̃)

⎞
⎠ |0〉.

(24)

In the first sum, the notation from m = �̃ to � symbolically means that no restriction
is placed on the single-particle states. In the second sum, the notation for m > 0 up
to � symbolically means that no two m states are considered such that one is related to
the other by the tilde operation. We prove that |�cl〉 is color neutral, in the average,
i.e. color quantum numbers balance out to 0. Let us consider the color su(3) generators
Sij = ∑

m

(
c∗
imcjm− 1

3δij

∑3
k=1 c∗

kmckm

)
, which, obviously, are closely related to the previously

introduced operators Jij . For i �= j , it is clear that⎡
⎣Sij ,

⎛
⎝κ

�∑
m=�̃

(c∗
1mc∗

2m̃ + c∗
2mc∗

3m̃ + c∗
3mc∗

1m̃) + υ

�∑
m>0

(c∗
1mc∗

1m̃ + c∗
2mc∗

2m̃ + c∗
3mc∗

3m̃)

⎞
⎠

⎤
⎦ = 0,

which implies

Sij |�cl〉 = 0, i �= j.

For i = j , the analogous commutator does not vanish, which is natural, because the
conservation of Sii implies the conservation of the particle number, but this is impossible
for a BCS state. However, we still have

〈�cl|Sii |�cl〉 = 0.

In this form, it is explicitly seen that |�cl〉 is color neutral. However, for analytical development
it is more convenient to define |�cl〉 through the equivalent Bogolubov–Valatin transformation
for colorless superconductivity, which involves the three colors on an equal footing and reads

cjm = α1j
d1m + α2j

d2m + α3j
d3m + β1j

d∗
1m̃ + β2j

d∗
2m̃ + β3j

d∗
3m̃

cjm̃ = α1j
d1m̃ + α2j

d2m + α3j
d3m̃ − β1j

d∗
1m − β2j

d∗
2m − β3j

d∗
3m, (25)

j = 1, 2, 3,

8
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where 1j , 2j , 3j denote a circular permutation of the indices 1, 2, 3 that is (11, 21, 31) =
(1, 2, 3), (12, 22, 32) = (2, 3, 1), (13, 23, 33) = (3, 1, 2) and the coefficients αj , βj , j =
1, 2, 3, are complex. The transformation is canonical provided

|α1|2 + |α2|2 + |α3|2 + |β1|2 + |β2|2 + |β3|2 = 1

α1α
∗
2 + α2α

∗
3 + α3α

∗
1 + β1β

∗
2 + β2β

∗
3 + β3β

∗
1 = 0

α1β2 + α2β3 + α3β1 − β1α2 − β2α3 − β3α1 = 0.

These conditions ensure that the fermion anti-commutation relations

{cim, c∗
jm} = δi,j , {cim, cjm̃} = {c∗

im, c∗
jm̃} = 0, (26)

imply and are implied by the anti-commutation relations

{dim, d∗
jm} = δi,j , {dim, djm̃} = {d∗

im, d∗
jm̃} = 0. (27)

We easily find, for j = 1, 2, 3,

1
3EBCS = 〈�cl|A∗

jAj |�cl〉 = 4G�2|α1β2 + α2β3 + α3β1|2
+ 2G�

(|β1β2 − β2
3 |2 + |β2β3 − β2

1 |2 + |β3β1 − β2
2 |2). (28)

Considering the ansatz

αi = α eiφi , βi = β eiφi , φ1 = φ2 = −π

9
,

φ3 = 5π

9
, 3(α2 + β2) = 1, α, β � 0,

we obtain

|α1β2 + α2β3 + α3β1|2 = 3α2β2,
∣∣βi1βi2 − β2

i3

∣∣2 = 3β2,

where i1, i2, i3 denote a permutation of the indices 1, 2, 3. Finally, we find

N = 18�β2,

EBCS = 〈�cl|
3∑

j=1

A∗
jAj |�cl〉 = 36G�2α2β2 + 54G�β4

= GN
18�

(12�2 − (2� − 3)N ). (29)

Comparing with (21), (22) and (23) we conclude that the color-superconducting phase is
energetically preferred for any value of N . Using the Schwinger representation of su(4),
developed by Yamamura et al [9], the lowest energy of the color-neutral sector may be
determined. It reads

Eexact = G
N

3

(
2� + 3 − 1

3
N

)
. (30)

In figure 2, the lowest energy of the color-neutral sector, equation (30), is compared with its
BCS estimate, equation (29), showing a remarkable performance of the BCS colorless method,
which even improves when � increases. In the same figure, the prediction of the standard
BCS approach, equation (16) is also presented for completeness. This figure shows that the
standard BCS approach requires an appropriate extension in order to cover the whole range
of fermion numbers, as explained in section 4. The colorless BCS state should be viewed as a
colorless condensate of colored BCS pairs.

9
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Figure 2. The lowest energy in the color-neutral sector of the Bonn model. A comparison of
the exact result (thick line) with the color-neutral BCS estimate, equation (29) (thin line) and
conventional BCS, equation (17) (broken line), for � = 10.

6. Discussion and conclusions

We have shown that, in the schematic nuclear model which we have investigated, colorless
states do not occur at the lowest energies contrary to colored states, so that the model is
not compatible with a ground state made up of colorless triplets, except in a narrow interval
around N = 3�. The model lacks an ingredient which automatically pushes colored states
to higher energies. In section 5, we have proposed a more realistic Hamiltonian that provides
the foundation for a ground state composed of colorless triplets. It is suggested that such a
Hamiltonian should contain a three-body force but it must also involve a chiral σ -field in order
to be complete.

The investigated schematic model has been exactly solved. Exact expressions for the
ground-state energy and for the gap, which is determined by the degeneracy of the single color
level, have also been presented.

It is most interesting to characterize the phases of color superconductivity. It seems that,
as mentioned before, a string force is active, but due to asymptotic freedom becomes weak
and originates a pairing color force that exists in 9 × 9 color–flavor combinations. They are in
definite color states unless quark–anti-quark pairs are coupled. Thus, we have to explain the
color neutrality of the pairing force.

One should make clear what Hamiltonian one uses. Like ordinary superconductivity, there
is the Cooper pair interaction from lattice vibrations parallel to the electric Coulomb force.
Color is different due to other things than just the change in potential. It to the non-Abelian
symmetry that the peculiar behavior of the pairing interaction is due.

In the last few years, several authors have paid attention to the color neutrality phenomenon
in superconductivity and QCD [11, 12]. It is worth remarking that in our case we explicitly
construct the eigenstates of the non-diagonal generators of color su(3) giving 0 as an eigenvalue.
The expectation value of the diagonal generators also vanishes. Indeed, we have presented
a color-neutral version of the BCS transformation which leads to exactly color-neutral BCS
states. This is in contrast with the approaches followed in [11, 12]. In [11], the authors

10
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resort to rather involved projection techniques to extract color-neutral states out of BCS sates
which violate color symmetry. It should be pointed out that the correlations described by the
present approach need not coincide with those arising within the framework of the projection
technique. In [12], color neutrality is defined by the condition that the average or expectation
value of some of the eight color operators Sij vanishes, that is, color neutrality is implemented
only in the average, even for i �= j .

What is then this colorless state and what does it consist of? It is, as seen from all the
vanishing generators, a glueball of vanishing color down to any volume of color strings with
gluons adding up to color neutrality, something like a Higgs scalar. A usual understanding of
the QCD vacuum is that there are supersymmetric states where electric vortices are squeezed in
the same way as the dual corresponding magnetic vortices in QED. Thus, there are string-like
color–electric flux lines that actually are neutral which is a very different situation from that
in QED.
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Corrigendum

Exact solutions to a schematic nuclear quark model and colorless superconductivity

H Bohr and J da Providência 2008 J. Phys. A: Math. Theor. 41 405202

Equation (24), expressing the color symmetric BCS state, should be replaced by

|�cl〉 = exp
3∑

j=0

⎛
⎝K

∑
0<m��′

A∗
jm + K̃

∑
�′<m��

Ajm

⎞
⎠ 3∏

j=m

∏
�′<m��

c∗
jmc∗

jm|0〉,

where

A∗
1m = (c∗

2mc∗
3m + c∗

2mc∗
3m).

Equation (25), describing the color symmetric BCS transformation, should be replaced
by

d1m = 1√
2(1 + 3K2)

(c2m − c3m − K(c∗
2m + c∗

3m − 2c∗
1m)),

d2m = 1√
6(1 + 3K2)

(c1m + c3m − 2c2m + 3K(c∗
3m − c∗

1m)),

d3m = 1√
3
(c1m + c2m + c3m),

d1m = 1√
2(1 + 3K2)

(c2m − c3m − K(c∗
2m + c∗

3m − 2c∗
1m)),

d2m = 1√
6(1 + 3K2)

(c1m + c3m − 2c2m + 3K(c∗
3m − c∗

1m)),

d3m = 1√
3
(c1m + c2m + c3m),

if 0 < m � �′, and should be replaced by

d1m = 1√
2(1 + 3K̃2)

(c∗
2m − c∗

3m + K̃(c2m + c3m − 2c1m)),

d2m = 1√
6(1 + 3K̃2)

(c∗
1m + c∗

3m − 2c2m − 3K̃(c3m − c1m)),

d3m = 1√
3
(c∗

1m + c∗
2m + c∗

3m),

d1m = 1√
2(1 + 3K̃2)

(c∗
2m − c∗

3m + K̃(c2m + c3m − 2c1m)),

1751-8113/09/089802+02$30.00 © 2009 IOP Publishing Ltd Printed in the UK 1
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d2m = 1√
6(1 + 3K̃2)

(c∗
1m + c∗

3m − 2c∗
2m − 3K̃(c3m − c1m)),

d3m = 1√
3
(c∗

1m + c∗
2m + c∗

3m),

if �′ < m � �.

Equation (29) should be replaced by

EBCS = GN
9

(
6� − N + 1 +

4N
3�

)
.

For the mathematical development behind these replacements, see a forthcoming note.
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